bilgievlerim
Logo Design by bilgievlerim.blogspot.com
TÜRKİYE CANIM FEDA TÜRKİYE CANIM FEDA

Çevirci -Translate - Перевести


27 Ekim 2018 Cumartesi

Bölme Bölünebilme

A) Bölme 



Bölme işleminde;
A = B.C + K  biçiminde gösterilir.
Bir bölme işleminde;
  1. K < B dir.
  2. K = 0 ise A sayısı B sayısına tam olarak bölünür.
  3. Kalan bölümden küçük ise bölen ile bölümün yerlerinin değiştirilmesi kalanı değiştirmez. 
A, B, c, d, e, f, birer tamsayı olmak üzere,
  • A nın c ile bölümünden kalan e,
  • B nin c ile bölümünden kalan d ise,
  • A + B nin  c ile bölümünden kala e + d,
  • A - B nin c ile bölümünden kalan e - d,
  • A.B nin c ile bölmünden kalan e.d,
  • An nin c ile bölümünden kalan en,
  • Kalan c den büyükse c ye tekrar bölünmelidir.
  • Kalan negatifse kalana pozitif olması için c nin katları eklenmelidir.
Örnek:
13 ile bölündüğünde bölümü 15, kalanı 8 olan sayı kaçtır ?
Çözüm:
İstenen sayıya x diyelim.
x = 13.15 + 8 = 203 tür. 
Örnek:
4ab üç basamaklı bir sayı olmak üzere, 4ab sayısı 26 ile tam bölünebildiğine ve bölüm 17 olduğuna göre, a + b değeri kaçtır ? 
Çözüm:
4ab = 26.17 =442
4ab = 442
Buna göre;
a = 4, b = 2 olduğu için,
a + b = 6 olur.

Bölünebilme Kuralları:

2 ile bölünebilme:
Bölünmek istenen sayının birler basamağı çift ise sayı 2 ye kalansız bölünür. Birler basamağı tek ise sayının 2 ile bölümünden kalan 1 dir.
3 ile bölünebilme:
Bölünmek istenen sayının rakamlarının toplamının 3 ile bölümünden kalan, o sayının 3 ile bölümünden kalana eşittir. Kalan 0 ise o sayı 3 ile tam bölünür.
4 ile bölünebilme:
Bölünmek istenen sayının son iki basamağını oluşturan sayıyının 4 ile bölümünden kalan, o sayının 4 ile bölümünden kalana eşittir. Kalan 0 ise o sayı 4 ile tam bölünüyor demektir.
5 ile bölünebilme:
Birler basamağı 0 yada 5 olan her tam sayı 5 ile kalansız bölünür. Sayının birler basamağının 5 ile bölümünden artan, kalanı verir.
7 ile bölünebilme:
Bölünmek istenen sayının rakamları sağdan sola doğru sırasıyla 1, 3,2 ile çarpılır ve bu çarpımlar üçerli gruplar halinde önce ( + ) ile sonra ( - ) ile çarpılıp toplanır. Toplamın 7 ile bölümünden kalan, sayının 7 ile bölümünden kalana eşittir. Kalan 0 ise sayının 7 ile tam bölündüğü sonucuna ulaşılır.
8 ile bölünebilme:
Bölünmek istenen sayının son üç basamağını oluşturan sayının 8 ile bölümünden kalan, o sayının 8 ile bölümünden kalana eşittir. Kalan 0 ise, o sayı 8 e kalansız bölünüyor demektir.
9 ile bölünebilme:
Bölünmek istenen sayının rakamlarının toplamının 9 ile bölümünden kalan, o sayının 9 ile bölümünden kalana eşittir. Kalan 0 ise o sayı 9 ile kalansız bölünür.
10 ile bölünebilme:
Bölünmek istenen sayının birler basamağındaki rakam, o sayının 10 ile bölümünden kalanı verir. Sayının 10 ile tam bölünebilmesi için birler basamağının 0 olması gerekir.
11 ile bölünebilme:
Bölünmek istenen sayının rakamları sağdan sola doğru +, -, +, -, +, -, ..... ile işaretlendirerek toplanır. Toplamın 11 ile bölümünden kalan, sayının 11 ile bölümünden kalana eşittir.
25 ile bölünebilme:
Bölünmek istenen sayının son iki basamağını oluşturan sayının 25 ile bölümnden kalan, o sayının 25 ile bölümünden kalana eşittir.
Dikkat edilirse 4, 8, 25 bölünebilme kuralı olarak benzerlik göstermektedir.
** Dikkat edilirse 3 ve 9 bölünebilme kuralı olarak benzerlik göstermektedir.
*** Dikkat edilirse 5 ve 10 bölünebilme kuralı olarak benzerlik göstermektedir.
Aralarında asal sayılara tam bölünebilen sayılar bu sayıların çarpımınada tam bölünür.
  • 6 ile tam bölünebilmesi için 2 ve 3 ile,
  • 12 ile tam bölünebilmesi için 3 ve 4 ile,
  • 15 ile tam bölünebilmesi için 3 ve 5 ile,
  • 18 ile tam bölünebilmesi için 2 ve 9 ile,
  • 20 ile tam bölünebilmesi için 4 ve 5 ile,
  • 24 ile tam bölünebilmesi için 3 ve 8 ile,
  • 28 ile tam bölünebilmesi için 4 ve 7 ile,
  • 30 ile tam bölünebilmesi için 3 ve 10 yada 5 ve 6 ile tam bölünmesi gerekir.
Örnek:
Beş basamaklı 42736 sayısının 3 ile bölümünden kalanı bulalım.
Çözüm:
4 + 2 + 7 + 3 + 6 = 22
22 nin 3 le bölümünden kalanı bulmalıyız.
2 + 2 = 4
4 ün üç ile bçlümünden kalan 1 dir.
Buna göre 42736 sayısının 3 ile bölümünden kalan 1 dir.
Örnek:
Üç basamaklı 736 sayısının sırasıyla 4, 5, 6, 7, 8, 9, 10, 11, ve 25 ile bölümünden kalanları bulalım.
Çözüm:
  • 36 sayısı 4 ün katı olduğu için, 736 sayısının 4 ile bölümünden kalan 0 dır.
  • 6 sayısının 5 ile bölümünden kalan bir olduğu için, 736 sayısının 5 ile bölümünden kalan dir.
  • 736 sayısı 2 ye tam bölünürken, 3 ile bölümünden 1 kalanını veriyor. 0 dan 5 e kadar olan sayılardan 2 ile tam bölünüp 3 ile bölündüğünde 1 kalanını veren sayı 4 tür. Dolayısıyla 736 sayısının 6 ile bölümünden kalan 4 tür.
  • 736 sayısını sırasıyla 1, 3, ve 2 sayıları ile çarpıp toplayıp çıkan sonunucun 7 ile bölümünden kalan, 736 nın 7 ile bölümünden kalana eşittir. (6.1) + (3.3) + (7.2) = 29 ve 29 sayısının 7 ile bölümünden kalan 1 olduğuna göre, 736 nın 7 ile bölümünden kalan dir.
  • 736 sayısının 8 ile tam bölünür. Kalan 0 dır.
  • (7 + 3 + 6) = 16 olduğundan ve 16 nın 9 ile bölümünden kalan 7 olduğu için 736 sayısının 9 ile bölümünden kalan 7dir.
  • 736 sayısının son basamağı 6 olduğu için, 736 sayısının 10 ile bölümünden kalan 6 dır.
  • 73sayısının 11 ile bölümünden kalan (7 + 6) -3 = 10 dur.
  • 36 sayısının 25 ile bölümünden kalan 11 olduğu için, 736 sayısının 25 ile bölümünden kalan 11 dir.
Örnek:
634 sayısının 18 ile bölümünden kalan kaçtır ?
Çözüm:
634 sayısı 2 ile tam bölünürken 9 ile bölümünden 4 kalanını veriyor. 0 dan 17 ye kadar olan sayılardan 2 ye tam bölünüp 9 ile bölümünden 4 kalanını veren sayı 4 tür. 634 sayısı 17 ile bölümünden 4 kalanını verir.
Örnek:
120 sayısının asal çarpanlarını bulalım.

Bir Doğal Sayının Tam Bölenleri

Çözüm:
120 = 23.3.5 tir.
120 nin asal çarpanları 2, 3, ve 5 tir.
Örnek:
2100 sayısının asal çarpanlarını bulalım.
Çözüm:
2100 = 21.100
          = 3.7.10.10
          = 3.7.2.5.2.5 = 22.3.52.7
olduğu için 2100 ün 4 tane asal çarpanı vardır. Bunlar; 2, 3, 5, 7 dir.

Bir Doğal Sayının Tam Bölenlerinin Sayısı

Bir A sayısının asal çarpanlarına ayrılmış şekli;
A = xa.yb.zc olsun.
  • A sayısının pozitif tam bölenlerinin sayısı = (a + 1)(b + 1)(c + 1) dir.
  • A sayısının tam sayı bölenlerinin sayısı = 2.(a + 1)(b + 1)(c + 1) dir.
  • A sayısının tam sayı bölenlerinin toplamı sıfırdır.
  • A sayısının asal bölenlerinin sayısı 3 tür. Bunlar x, y, z dir.
Örnek: 
72 sayısının pozitif tam bölenlerinin sayısı kaçtır ?
Çözüm:
72 = 8.9 = 23.32
72 nin pozitif tam bölenlerinin sayısı = (3 + 1).(2 + 1) = 12 dir.

Çarpanlara Ayırma Konu Anlatımı

Çarpanlara Ayırma Konu Anlatımı

Matematiğin en önemli konularından birisi çarpanlara ayırma konusudur. Bir konu olmanın ötesinde diğer konularda işlem yaparken de sürekli bu konuda öğrendiklerimize ihtiyaç duyarız. Aslında çarpanlara ayırma bir konudan çok bir matematik becerisidir. O yüzden bu konuyu çok iyi öğrenmek gerekir.
Aşağıda konuyu detaylı bir şekilde anlatmaya çalıştık. Anlatılanları dikkatli bir şekilde okumaya özen gösterin. Ardından da konuyla ilgili çok test çözmeye çalışın. Çünkü bu konuyu iyi bilmezsek diğer matematik konularında da zorlanırız.

Çarpan Kavramı

Sayıların çarpanları vardır. Her sayı çarpanlarıyla birlikte ifade edilebilir.

Yukarıdaki örnekte 6'nın çarpanlarını farklı şekilde görebiliyoruz. Nasıl ki tam sayıların çarpanı varsa denklemlerin de çarpanları vardır.
Bir ifadeyi çarpanlarının çarpımı şeklinde yazmaya çarpanlarına ayırma denir.
Çarpanlarına ayırma aslında bir sayının çarpanlarını bulmak demektir. Bir denklemin çarpanlarını bulalım.

Ortak Çarpan

Ortak çarpan kavramı bizim için çok önemlidir. Bir ifadede bulabildiğimiz ortak değere ortak çarpan denir. Örnek üzerinden basitleştirmeye çalışalım.
3x + 6 ifadesi için 3 ve 6 ifadelerinin ikisinin de 3'ün katı olduğu ortadadır. Öyleyse 3'ü ortak çarpan olarak alabiliriz.
Öyleyse ;3x + 6 = 3(x + 2) şeklinde yazabiliriz.
Yukarıdaki örnekte ortak çarpan parantezine almayı görüyoruz. Bu bir ifadeyi çarpanlarına ayırmak için en çok başvurulan yöntemdir. Bu nedenle bol miktarda ortak çarpan parantezine alma örneği yapmamız gerekir.
Paranteze almanın zıttı ise paranteze dağıtmaktır. Örneğin 2(x + 4) ifadesi paranteze alınmıştır. Bunu dağıtırsak 2'yi + işaretinin her iki yanıyla ayrı ayrı çarpmamız gerekir. Yani 2(x + 4) = 2.x + 2.4 olur. Bu da 2x + 8 edecektir.
Ortak çarpan parantezine alma ve parantez içerisine dağıtma işlemlerini gördük. Bunları matematik hayatımız boyunca çok kullanacağız.
Bu konuyla ilgili bir örnek daha yapalım.
3y2 + 12y ifadesini ortak çarpan parantezine alalım. Ortak çarpanı 3 olarak aldığımızda 3y2 + 12y = 3(y2 + 4y) eşitliğini kurarız.
Ancak sizin de gördüğünüz gibi ifademiz yeterince basitleşmedi. Bu nedenle daha iyisini yapabiliriz. 3y2 ve 12y ifadelerinde ortak olan sadece 3 değil aynı zamanda da y bulunmaktadır.
Öyleyse ifadeyi 3 değil de 3y parantezine alalım. 3y2 + 12y = 3y(y + 4) bu ifade artık daha sade hale gelmiş oldu.
Ortak çarpan parantezine alırken en büyük ortak çarpanı bulmaya özen göstermeliyiz.
Şimdiye kadar basit örnekler yaptık. Matematikte her seferinde daha zor örneklerle karşılaşma ihtimali bulunmaktadır. Bu nedenle bol örnekle daha zor sorulara hazırlanmamız gerekir.

Önemli Özdeşlikler

Çarpanlara ayırma konusunda özdeşlikler işimizi çok kolaylaştıracaktır.
4x2 − 9 ifadesinde 2x'in ve 3'ün karesi alınmıştır. Öyleyse bu ifadeyi (2x)2 − (3)2 şeklinde yazabiliriz. Bu durumda elimizde iki ifadenin karelerinin farkı çıkar. Bunu da en basit ve temel özdeşlikle halledebiliriz.
(a + b)(a − b) = a2 − b2 özdeşliği iki kare farkı olarak bilinir ve matematikte çok kullanışlıdır. Yukarıdaki örneğe bu özdeşliği uygularsak (2x+3)(2x−3) = (2x)2 − (3)2 = 4x2 − 9 eşitliğini elde ederiz.
Aşağıda en önemli özdeşlikler sıralanmıştır.
a2 − b2 = (a+b)(a−b)
a2 + 2ab + b2 = (a+b)(a+b)
a2 − 2ab + b2 = (a−b)(a−b)
a3 + b3 = (a+b)(a2−ab+b2)
a3 − b3 = (a−b)(a2+ab+b2)
a3 + 3a2b + 3ab2 + b3 = (a+b)3
a3 − 3a2b + 3ab2 − b3 = (a−b)3
Bu özdeşliklerin sayısını arttırabiliriz. Ancak yukarıda listelenenler en çok kullanacaklarımızdır.

Çarpanlara Ayırma Soruları

Soru çözme bu konunun oturması için yapılacak en önemli iştir. Şimdi birkaç örnek soruyla konuya ısınmamızı sağlayalım.
Soru: 5y2 + 15y doğru paranteze alınmış şekli aşağıdakilerden hangisidir?
A) 5(y2 + 3y)
B) y(5y + 15)
C) 5y(y + 3)
D) 10y2
E) y(y + 5)
Çözüm: İki ifadede ortak 5 ve y vardır. Öyleyse ifadeyi 5y parantezine ayırmalıyız. 5y(y + 3) en doğru paranteze alma şekli olduğu için cevap C seçeneğidir.
Soru: x5 - 81x ifadesinin tamamen çarpanlarına ayrılmış hali aşağıdakilerden hangisidir?
A) x(x4 - 81)
B) x(x+ 9)(x2 - 9)
C) x(x + 3)3(x - 3)
D) x(x2 + 9)(x + 3)(x - 3)
E) 9x + 5x2
Çözüm: x5 ve 81x'in ortak çarpanı x'tir. Yani x5 - 81x = x(x4 - 81) eşitliğini kolayca kurabiliriz.
Ancak bu tamamen çarpanlarına ayrılmış hali değildir. Çünkü elimizde artık iki kare farkı vardır.
x4 - 81 = (x2 + 9)(x2 - 9) olur. Çünkü x2'nin karesi x4, 9'un da karesi 81'dir.
Ancak yine işimiz bitmiş değil. Çünkü x2 - 9 ifadesi de iki kare farkı demektir.
Bunu da açarsak x2 - 9 = (x + 3)(x - 3) olur. Böylelikle ifadenin tam çarpanlarına ayrılmış hali x5 - 81x = x(x2 + 9)(x + 3)(x - 3) olacaktır. Yani cevap D seçeneği olur.

Modüler Aritmetik


Modüler Aritmetik

Z = {..., -3, -2, -1, 0, 1, 2, 3, ... } kümesinde tanımlanan
β = {(x,y) : m | (x - y), m Î Z- {1} ve x, y Î Z}
bağınıtısı denklik bağıntısıdır. β, denklik bağıntısı olduğundan, ∀ (x, y) Î β için x ≡ y (mod m) dir.
Diğer bir ifadeyle, x in m ye bölümünden kalan y ise modül m ye göre x, y ye denktir denir ve x ≡ y (mod m)  şeklinde gösterilir.
Örnek:
25  4 (mod 7) ğ 25 in 7 ile bölümünde kalan 4 tür.
35 ≡ 8 (mod 9) ğ 35 in 9 ile bölümünde kalan 8 dir.
38  2 (mod 6) ğ 38 in 6 ile bölümünde kalan 2 dir.
Kural:
x ≡ y (mod m) ve z ≡ t (mod m) olsun.
  • x + z ≡ y + t (mod m) 
  • x - z ≡ y - t (mod m) 
  • x.z ≡ y.z (mod m) 
  • k.x ≡ k.y (mod m) 
  • xn ≡ yn (mod m) , n Î
Örnek:
257 sayısının 5 ile bölümünden kalanı bulalım.
Çözüm:
257 sayısının 5 ile bölümünden kalan x ise 257 ≡ x (mod 5) tir.
257 ≡ x (mod 5)
2≡ 2 (mod 5)
2≡ 4 (mod 5)
23 ≡ 3 (mod 5)
2≡ 1 (mod 5)  *
2 nin 4. kuvveti 1 olduğuna göre, 4 ün katı olan kuvvetlerinde 1 dir.Bunun için üssün 4 e bölümünden kalan bulunur. Buradan sonuca gidilir.
57 = 4.14 + 1 olduğuna göre sonuç 21 dir.
257 ≡ (24)14 21 (mod 5)
       ≡ 113.21 (mod 5)
       ≡ 1.21 (mod 5) 
       ≡ 2 (mod 5) dir.
Örnek:
334 sayısının birler basamağının kaç olduğunu bulalım.
Çözüm:
Bir sayının 10 a bölümünden kalan rakam, o sayının birler basamağındaki rakamdır. Buna göre ,
334 ≡ x (mod 10) ise x i bulmalıyız.
  3≡ 3 (mod 10)
  3≡ 9 (mod 10)
  3≡ 7 (mod 10)
  3≡ 1 (mod 10)  *
 O halde,
334 ≡ (34)8.3(mod 10)
       ≡ 18.32 (mod 10)
       ≡ 32 (mod 10)
       ≡ 9 (mod 10) bulunur.
x = 9 dur.
Buna göre, 334 sayısının birler basamağındaki rakam 9 dur.
Kural:
x, m nin tam katı olmayan pozitif bir tam sayı ve m asal sayı ise
xm-1 ≡ 1 (mod m) dir.
 Örnek:
  24 ≡ 1 (mod 5)
  3≡ 1 (mod 7)
510 ≡ 1 (mod 11)
  8≡ 1 (mod 9)
Görüldüğü gibi kural ciddi kolaylık sağlamaktadır.
Örnek:
31998 ≡ x (mod 5)
olduğuna göre, x değerini bulalım.
Çözüm:
Kural gereği
      3≡ 1 (mod 5) dir. Buna göre,
31998 ≡ 31996.32 (mod 5)
            ≡ (34)499.3(mod 5)
            ≡ 1499.4 (mod 5)
            ≡ 1.4 (mod 5)
            ≡ 4 (mod 5)
Buradan x = 4 olur. 

Benzer Konular (Similar Topics)(Похожие темы)( Sujets similaires) ( Ähnliche Themen) (مواضيع مماثلة)